employee
Moscow, Moscow, Russian Federation
The article analyzes the use of artificial intelligence algorithms in the professional practices of empirical sociologists, in particular, it explores the possibilities and limitations of using generative neural networks for developing research program, processing, and analyzing data. The article proposes a typology of neural networks used in research and data analysis, and highlights key practices for their use. It also provides insights into the specific possibilities and limitations of incorporating generative neural networks into the professional practices of empirical sociologists.
empirical sociology, generative neural networks, large language models, artificial intelligence
1. Ball M. The Metaverse: How It’s Changing Our World. Moscow: Alpina Publisher, 2023. 368 p. (In Russ.).
2. VTsIOM. Template for formatting focus group transcripts. URL: https://conf.wciom.ru/fileadmin/user_upload/conference/2023/stenogramma_2023/intellektualnyj_tandem_sociologi_i_ChatGPT.pdf (accessed 20.06.2025) (In Russ.).
3. Gulyaev A. V., Pivneva S. V. Application of a Bidirectional Multilayer Neural Network for Restoring Missing Values in Time Series // Neurocomputers: Development, Application. 2025. Vol. 27. No. 2. P. 54–61. https://doi.org/10.18127/ j19998554-202502-06 (In Russ.). DOI: https://doi.org/10.18127/j19998554-202502-06; EDN: https://elibrary.ru/PFEOEI
4. Zangieva I. K. Comparative Analysis of Algorithms for Filling in Missing Values in Sociological Data. Dissertation for the Degree of Candidate of Sociological Sciences. Moscow, 2012 (In Russ.). EDN: https://elibrary.ru/QFWFER
5. The tool of "philosophical questioning": chat gpt and other artificial intelligence models in political theory, methodology, and applied research // Comparative Politics. 2022. Vol. 13. P. 130–139 (In Russ.). DOI: https://doi.org/10.46272/2221-3279-2022-3-13-130-139; EDN: https://elibrary.ru/EDAVDL
6. Lane H. H. Natural Language Processing in Action. St. Petersburg, Peter. 2020. 576 p. (In Russ.).
7. Moiseev S., Staff M. "There’s an AI for that": ChatGPT capabilities for working with open data sources // Sociodigger. 2023. Vol. 4. Issue 7–8 (27). URL: https://sociodigger.ru/articles/articles-page/theres-an-ai-for-thatvozmozhnosti-chatgpt-dlja-raboty-s-otkrytymi-istochnikami-dannykh (accessed 06.20.2025). (In Russ.).
8. Osipova N. G. Digitalization of Social Reality: Key Discussions // Bulletin of Moscow University. Series 18. Sociology and Political Science. 2022. Vol. 28. No. 3. P. 4. https://doi.org/10.24290/1029-3736-2022-28-3-9-42 (In Russ.). EDN: https://elibrary.ru/NSYWXR
9. OpenMemory. URL: https://github.com/mem0ai/mem0/tree/main/openmemory (accessed 20.06.2025).
10. Rezaev A. V., Tregubova N. D. From the Sociology of Algorithms to the Social Analytics of Artificial Sociality: An Analysis of API and ChatGPT Cases // Monitoring of Public Opinion: Economic and Social Changes. 2023. No. 3. P. 3–22. https://doi.org/10.14515/ monitoring.2023.3.2384 (In Russ.). DOI: https://doi.org/10.14515/monitoring.2023.3.2384; EDN: https://elibrary.ru/WJFDVF
11. Romanchukov S. V., Berestneva O. G., Petrova L. A. Training a Neural Network that Models the Socioeconomic Development of a Region. Digital Sociology // Digital Sociology. 2019. No. 2(2). P. 34–40. https://doi.org/10.26425/2658-347X-2019-2-34-40 (In Russ.). EDN: https://elibrary.ru/CXMAPC
12. Smirnov V. A. New Competencies of a Sociologist in the Era of Big Data. // Monitoring of Public Opinion: Economic and Social Changes. 2015. No. 2. P. 44-54. https://doi.org/10.14515/monitoring.2015.2.04 (In Russ.). EDN: https://elibrary.ru/TTIFTJ
13. Smirnov V. A. "Digitalization" of Sociology: New Opportunities and Key Contradictions // Bulletin of Moscow University. Series 18. Sociology and Political Science. 2024. No. 30(4). P.146-164. https://doi.org/10.24290/1029-3736-2024-30-4-145-163 (In Russ.). EDN: https://elibrary.ru/QPLLVI
14. Tertyshnikova A. G., Pavlova U. O., Starovoytova M. D. Neural Network as a Mirror of Social Attitudes: Analysis of Distortions in Generative Images // Digital Sociology. 2024. Vol. 7, No. 4. P. 13–21. (In Russ.). DOI: https://doi.org/10.26425/2658-347X-2024-7-4-13-21; EDN: https://elibrary.ru/MGOLYT
15. Tolstova Yu. N. Sociology and Computer Technologies // Sociological Research. 2015. No. 8. P. 3–13. (In Russ.). EDN: https://elibrary.ru/UFZIOR
16. Tronov K. A., Fedorov V. O. Recurrent Neural Networks with Controlled Recurrent Blocks for Multidimensional Time Series with Missing Values // Original Research. 2022. Vol. 12, No. 12. P. 352– 359. (In Russ.). EDN: https://elibrary.ru/WKFSVW
17. Foster D. Generative Deep Learning. The Creative Potential of Neural Networks. St. Petersburg: Peter, 2020. 352 p. (In Russ.).
18. Yadov V. A. Strategy of Sociological Research. Description, Explanation, and Understanding of Social Reality. Moscow: Dobrosvet, 2003. 596 p. (In Russ.).
19. Yakimova O. Neural networks in research practice // Sociodigger. 2023. Vol. 4, No. 7-8. URL: https:// sociodigger.ru/articles/articles-page/neiroseti-v-issledovatelskoi-praktike#_ftn3 (accessed 20.06. 2025) (In Russ.).
20. Khayretdinova M., Pshonkovskaya P., Zakharov I., Adamovich T., Kiryasov A., Zhdanov A., Shovkun A. Predicting placebo responses using EEG and deep convolutional neural networks: correlations with clinical data across three independent datasets // Neuroinformatics. 2025. No. 23 (2). URL: https:// pmc.ncbi.nlm.nih.gov/articles/PMC12089153/ accessed 20.06. 2025). DOI: https://doi.org/10.1007/s12021-025-09725-6
21. King G. Restructuring the Social Sciences: Reflections from Harvard’s Institute for Quantitative Social Science // PS: Political Science & Politics. 2013. Vol. 47. No. 1. P. 165–72. DOI: https://doi.org/10.1017/S1049096513001534
22. Kitchin R. Big Data, new epistemologies and paradigm shifts // Big Data & Society. 2014. Vol. 1, No. 1. P. 1–12. https://mural.maynoothuniversity.ie/id/eprint/5364 (accessed 20.06.2025). DOI: https://doi.org/10.1177/2053951714528481
23. Kolenik T., Gams M. Intelligent Cognitive Assistants for Attitude and Behavior Change Support in Mental Health: State-of-the-Art // Technical Review. Electronics. 2021. Vol. 10, No. 11. https://doi.org/10.3390/electronics10111250 EDN: https://elibrary.ru/VSMGGE
24. Lazer D., Pentland A. et al. Computational social science // Science. 2009. Vol. 323, № 5915. P. 721–722.
25. Lupton D. Thinking with care about personal data profiling: A more-than-human approach // International Journal of Communication. 2020. Vol. 14. P. 3165–3183
26. Pellert M., Lechner C. M., Wagner C., Rammstedt B., Strohmaier M. AI Psychometrics: Assessing the psychological profiles of large language models through psychometric inventories // Perspectives on Psychological Science. 2024. Vol. 19, No. 5. https://doi.org/10.31234/osf.io/jv5dt
27. Silva-Ramírez E.-L. et AI Single imputation with multilayer perceptron and multiple imputation combining multilayer perceptron and k-nearest neighbours for monotone patterns // Applied Soft Computing. 2015. No. 29. P. 128–132. DOI: https://doi.org/10.1016/j.asoc.2014.09.052
28. Winter J. de, Driessen T., Dodou D.. The use of ChatGPT for personality research: Administering questionnaires using generated personas // Personality and Individual Differences. 2024. No. 228. URL: https://www.sciencedirect.com/science/article/pii/S0191886924001892?via%3Dihub#bi0005 (accessed 20.06.2025). DOI: https://doi.org/10.1016/j.paid.2024.112729
29. Your Brain on ChatGPT: Accumulation of Cognitive Debt when Using an AI Assistant for Essay Writing Task. URL: https://arxiv.org/pdf/2506.08872 (accessed 20.06.2025)
30. Yu F. Y., Hsieh H. T., Chang B. The potential of Second Life for university counseling: a comparative approach examining media features and counseling problems // Research and Practice in Technology Enhanced Learning. 2017. No. 12. URL: https://telrp.springeropen.com/articles/10.1186/s41039-017- 0064-6 (accessed 20.06. 2025). DOI: https://doi.org/10.1186/s41039-017-0064-6